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Abstract—A semianalytical approach is developed for the study of doubly symmetric interactive
buckling of plate structures subject to axial compression, using the theory of mode interaction and
finite strip concept. The approach is shown to be capable of dealing with a variety of interaction
phenomena. Imperfection-sensitivity of a panel with near-coincident local and Euler critical stresses
is seen to be dependent on the slenderness of the constituent members and the extent of their
participation in the local buckling process. No catastrophic behavior is associated, however, with
interactive buckling of a narrow stiffened plate supported along its longitudinal edges, in the elastic
range. The “naive optimum” design is probably justified in these cases.

NOTATION

extensional rigidity (= E1/(1 — v¥) of the plate element
flexural rigidity (= Et*/12(1 — v?)) of the plate element
Young’s Modulus
operator relating the generic strain to generic stress
N,N,N, membrane stress resultants (Normal and shearing) acting at the middle surface of the plate
ratio between overall and local critical stresses
U total potential energy
t thickness of plate element
! length of the plate structure
m,, m, number of halfwaves of the buckling modes designated 1 and 2 respectively (Subscript 1 corresponds
to a local mode always)
u,v,w the displacement components defined over the middle surface of the plate
x,y,z the coordinate directions (longitudinal, transverse and normal)
¢ the generic strain
normal and shearing strains at the middle surface of the plate element
prescribed average axial strain (end shortening divided by length) of the structure
Ay, A, critical values of 4, (Subscript 1 corresponds to local mode)
the value of 4, at which the structure carries the maximum load
v Poisson’s ratio
£,, &, amplitudes of the initial buckling in mode 1 and 2 respectively {(normalized with respect to the plate
thickness)

E® EP  initial imperfections in the modes 1 and 2 respectively

g, prebuckling stress
euler critical stress
g, local critical stress
critical stresses in modes 1 and 2
o,, average stress carried by the plate structure
max Maximum of g,

TmT O
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INTRODUCTION

Recent years have seen a surge of interest in the subject of interactive buckling of plate
structures. This has largely been due to the discovery[l] of the fact of imperfection-
sensitivity associated with “‘naive’” optimum designs based on the equality of local and
overall buckling strengths under axial compression. The interest has been focussed on the
determination of the imperfection-sensitivity of near-coincident buckling and the ultimate
strength of the structure for given ratios (R) of Euler buckling stress (o,) to the local
buckling stress (a)).

Interaction of buckling modes in plate structures is not confined, however, to the
problem of local and overall buckling. Prismatic plate structures with a variety of
cross-sectional configurations are currently being employed in various forms of engineering
construction. When subjected to axial compression these can buckle in a variety of modes
which may be classified as below:
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Mode I

Each constituent plate can buckle out of plane with the junctions remaining essentially
straight. This is the familiar “local” buckling mode and has a halfwave length of the same
order of magnitude as the width of the constituent plates (Fig. 1a).

Mode 11

Some of the constituent plates may undergo inplane bending (and twisting) while the
rest bend out of plane as in pure local buckling. This type of buckling has been termed
“local torsional buckling”, “stiffener buckling” or “orthotropic buckling” depending upon
the context (Fig. 1b—). The associated wavelengths are considerably greater than those
of Mode I, but there is a halfwave length for which the critical stress is a minimum.

Mode IIT

The plate structure may buckle in an “overall” mode which may be either a purely
flexural mode or a flexural torsional mode. This mode involves practically no bending in
the cross-sectional plane.

Significant postbuckling resistance is generally available after local buckling where as
the intervention of overall (Mode IIT) buckling generally paves the way for the exhaustion
of the stiffness of the structure. Again the inplane bending of the stiffening elements which
occurs in Mode II buckling often would lead to plastic yielding at key locations of the
structure thus hastening the collapse of the structure. Any intervention of the latter two
modes can therefore be expected to seriously undermine the often significant post-local-
buckling strengths of plate structures.

In view of the foregoing remarks, the following interactions would appear to be of
interest from an engineering stand point:

(1) A local mode (Mode I) with another local mode.
(2) Mode I with Mode 1I.
(3) Mode 1 with Mode IIL

The problem of interaction of two local modes in a rectangular plate has been studied
by Supple[2]. The interaction falls in the “doubly symmetric” category with a potential
energy function for the perfect structure in the form:

U= (1 — *G->§12 + <1 - ;)522 + bncl4 + blZClzézz + bzzézd (h

G 2.

%t

(b) (c)

Fig. 1. Typical buckling modes of prismatic plate structures. (a) Local modes. (b) Local-torsional
mode. (c) Orthotropic mode.
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where ‘o’ is the loading parameter (e.g. average stress carried by a uniformly compressed
plate in Ref.[2]) &, and £, are the amplitudes of the participating modes of buckling, and
o, and g, are the respective critical stresses. A detailed study of the general characteristics
of such a system has been made by Supple in an earlier paper[3]. The energy function (1)
is known to lead to the double cusp catastrophe[4] studied in some detail by Magnus and
Poston[5, 6]. Such an energy function arises in stiffened structures whenever the buckling
modes consists of even number of halfwaves, e.g. in stiffened cylindrical shells{7).

The first detailed investigations of nonlinear interaction between the overall buckling
of built up column and local buckling of plate flanges are due to Graves-Smith{8] and van
der Neut[9]. Several authors{10-15], notably Koiter, Tvergaard and Thompson among
them contributed to further developments both for built up columns and stiffened plates.
Tvergaard’s paper[10] has received considerable attention on two counts: it is one of the
earlier systematic attempts to employ the theory of mode interaction to study the problem,
and his analysis predicted severe imperfection sensitivity for a panel having stocky
stiffeners. However, in his ealculations, Tvergaard neglected several terms which appear
to have considerable importance in retrospect. His analysis is based on the semi-
symmetric{16] energy function for the perfect structure in the form:

U= (1 — ;—-)512 + <1 - ai)fzz + b112& 28 + bl 2

<t €2,

where &, and ¢, stand here for the local and overall buckling amplitudes. Here the most
important omission appears to be the quartic term in ¢,, which encapsulates the
post-local-buckling resistance. Again the retention of only the lowest order terms
associated with imperfections in his analysis restricts the validity of his analysis to
extremely small imperfections. Interestingly for the case of cross-sections with two axes of
symmetry, Tvergaard model would predict neither an interaction nor the existence of
postbuckling equilibrium in individual modes, as then both b;,, and b,,, will identically
vanish.

Koiter developed a comprehensive, but a somewhat simplified method of approach to
the interactive buckling in stiffened panels[11-13]. In plate structures, the interaction of
long-wave mode (such as the Euler mode) with a local mode triggers two additional
neighboring modes (as shown in the present paper in a later section) and these in turn
trigger additional modes thus setting up a chain reaction. In stiffened plates this
phenomenon takes the form of “amplitude modulation” and Koiter accounted for this by
letting the local amplitude vary according to a slowly varying function. His energy
functional takes the form:

U=<1 _al>€12+<1 —;{)622*‘1711251252*‘b1m§14 (3)

a )

where ‘£;” is no longer simply the amplitude of the local mode, but includes the effect of
the modulating function. In calculations Koiter included some of the higher order terms
of initial imperfections. The interaction of the buckling modes occurs by virtue of the term
involving £,%¢,. It is important to note that this does not vanish for the multibay column
which buckles in even number of halfwaves, because of amplitude modulation, but it does
however, vanish when the cross-section has two axes of symmetry and the local mode is
symmetric or antisymmetric about the axis about which overall buckling takes place
because of the antisymmetry of the overall displacements in the cross-section about the
same axis (Fig. 2). In order to explain the interaction in such cases Koiter has suggested
the consideration of the modification of the local mode that occurs in the postbuckling
range.

In the present paper a method of approach is outlined wherein this modification in the
postbuckled range is automatically comprehended in a systematic application of the theory
of mode interaction[7]. In order to highlight this feature, we consider the situation where
the cubic terms vanish because of symmetry. Thus we are constrained to consider the
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Fig. 2. Sections with two axes of symmetry with symmetric or antisymmetric local modes. (a) Box
column. (b) Concentrically stiffened plate.

quartic terms in the analysis and our model reduces to the doubly symmetric one
mentioned earlier. In axially compressed prismatic plate assemblies, this model is
applicable in the following situations:

(i) Both the participating modes consist of even number of halfwaves. Note that a
column clamped at the ends can be visualized as one with halfwaves of overall buckling
(Fig. 3a).

(ii)) The cross-section of the column has two axes of symmetry and carries a uniform
compressive stress. The overall buckling may consist of a single halfwave (corresponding
to the simply supported end conditions), while the local buckling must however consist
of an even number of halfwaves. (The latter restriction can in practical computations be
relaxed since the local buckling can be modelled using the “classical assumptions™[17] first
suggested by Benthem[18]).
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Fig. 3. [dealization of the end boundary conditions. (a) Initial buckling mode of a column clamped
at its ends. (b) Inplane buckling of a stiffener and a possible loading arrangement.
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The doubly symmetric interaction considered in the paper involves principally two
modes and the amplitude modulation arises by virtue of the mixed second order field taken
into account in the analysis. The paper demonstrates the value of the semianalytical
technique which employs the characteristic functions of the postbuckling problem to
describe the variation of displacements in the longitudinal direction and discretization in
the transverse direction to be able to model complex cross-sectional geometries. The use
of the theory of mode-interaction provides a clear insight into the mechanics of the
phenomena—a feature absent in the full-blown nonlinear analysis. The major limitation
of the analysis stems from the fact that it is based on no higher than second-order
displacement fields. If the load parameter approaches the singularities of the second order
fields (in particular the mixed second order field for local and Euler buckling interaction)
a severe imperfection sensitivity would be predicted. This would happen for instance, in
the case of a near-perfect stiffened panel with near-coincident local critical loads associated
with similar mode-shapes in the transverse direction. The Tvergaard panel is a case in
point. An upper-bound to the maximum load carried can, however, be obtained by
deactivising the secondary local modes by deleting the key term associated with the load
parameter which is the source of the singularities.

The present studies clearly demonstrate the effect of slenderness of the stiffening
elements on the imperfection-sensitivity of Euler-local buckling interaction: The more
slender the stiffener, the more severe the imperfection-sensitivity. The interaction of local
buckling and Mode II type of buckling for a narrow longitudinally supported panel
carrying a single stiffener is also investigated. If the material remains elastic, this type of
interaction does not produce any catastrophic behavior in presence of initial imperfections,
i.e. there exists no limit to the end-compression the structure can carry. The “naive”
optimum design concept appears to be justified here. On the otherhand, the appearance
of overall deflections would result in a rapid build up of compressive stresses in key
locations leading to an early onset of plasticity in practical cases. Interestingly, this
tendency can be marginally offset by the presence of local imperfections.

THEORY
Figure 4 shows a typical plate structure divided into an appropriate number of strips
together with the coordinate axes for a typical strip; the structure is assumed to be
compressed uniformly.
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Fig. 4. Finite strip configuration and the local coordinate system and a typical strip.
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Theoretical basis

In outlining the theory of mode interaction as developed for the present problem, we
follow in the main, the elegant formalism employed by Budiansky and Hutchinson[19],
and more recently by Byskov and Hutchinson[7].

Let 4 stand for a vector function defined by the displacement components «, v, w of
the middle surface of a typical strip of a plate (Fig. 4) and be represented in the form:

4 =uy+ w&) + ) + uy &* + uply? + uyt L. 4)

Here u, stands for the uniform uniaxial compression corresponding to the trivial primary
path given by

Ao(l/2 — x)
vigy

0 )

u0=

where 4, stands for the compressive strain imposed on the structure.

¢; are the nondimensional amplitudes of the participating buckling modes.

u,,, Uy, are the respective second order displacement fields and u,,(= u,,) is the mixed
second order field defined over the plate middle surface. The modes u, and u, are
orthogonal in the sense the quadratic part of the potential energy takes a diagonalized
form. The displacement fields are orthogonal to u; in the sense

Ou,Ouy, _
L%6x$ d4 =0 (6)

for any i, j, k, where the integral is taken over the area of the middle of the plate structure.

Let ‘¢’ stand for the generic strain characterized by the membrane strains (¢, ¢,, €,,)
and curvatures (X, X;» X)s 1-€.

%
Yol - (7

The description of ‘¢’ in the primary path takes the form:
€=1{—4,v390000}".

The first and higher order strain fields describing the bifurcated path take the form:

€= Li(u) (8a)
€;= Ly(u;) + %Lz(ux) (8b)
€; = Li(uy) + L4, u), (i #J), (8¢c)

etc. where L,, L, L,; stand for appropriate linear, quadratic and bilinear operators.
The corresponding stress fields are obtainable from the linearized Hooke’s law, stated

simply as

o = He )
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The potential energy function for the eigenvalue and higher order field problems take

the forms:
U= %{H (L) L)+ o8- Lz(“i)} (10a)

(no sum on ‘i’)

Uy = Y{HIL((u) - L) + Ly - L) + Li(w) - Lyy(u u} + 03 - Ly(w)}  (10b)
(no sum on “i")

(U‘f) = %{H [Ly(u) + Ly(uy) + Ly(uy) - Lyy(us u)
i

+ Ly(w) « Lyy(w;, uy) + Ly(ay) - Lyy(u, )] + 08 - Lz(“g)} (10c)
{no sum on i or j)

where o = — 0, = — He,. In the foregoing a dot operation indicates a product of two

functions integrated over the area of the middle surface of plate structure. The principle

of stationary potential is invoked to produce the necessary equilibrium equations to obtain
u; and uy

The total potential energy function for prescribed axial compression can be written in
the form:

UTM=%U'€=§H€'€ (11)
where
€ =+ 68 + 66 + 68 + enlt + 6518 + €ndy? + em&

In terms of the amplitudes £, and &,

Urom = %{[fo € — g €u)é)2 + [Hey - € — 04e)E 5"
+ Hley - €udy* + € €08 + ey en+ €3 €+ 2611 6+ 26 61)5:2522]}»
(12)

The influence of initial imperfections in the modes of buckling, ¢{¥ and ¢, is incorporated
by writing the strain field ‘¢’ in the form:
=g+l +66+ fu{flz + 2808} + 522{522 + 25?)52} + 512{5;52 + &9 + fg”fl}
+ 6p{é2 + 250G + 6 P+ e {&28 + 28,808 + &% . (13)

This is substituted in eqn (11) to produce a modified potential energy function in the form:

Urowr = (41 — 2)aé;? + (A — A)a8y? + by (&' + 4860 + 48 26
4 byt + 452D + AE2ED) + bl R + b6l + e E2EED
+ diy(E2ED? + & PP) + €8 EEDED — 2048 EP + 0,88 D) (149

where a,, a, . . . e;; are coefficients evaluated using eqn (9) and (13), 1 is the prescribed end
shortening divided by the length of the structure, 4, and A, are the critical values of 4, in
the modes 1 and 2. By differentiating eqn (11) with respect to each of ¢, and ¢,, a pair
of nonlinear equations are produced which is solved iteratively for values of 4, incremented
in small steps.

Solution of the component problems
The halfwave length of local buckling is generally so small compared to the length of
the structure so that some approximation of the end boundary conditions can often be
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accepted. Because of this, it is possible to represent the displacements in the longitudinal
direction by their characteristic forms which satisfy the governing differential equations.
A semianalytical technique is therefore employed with discretization confined to the
transverse direction.

x-variation of the displacement fields

Figure 4 shows a typical plate structure divided into a number of longitudinal strips.
The functions describing the variation of the displacements u, v and w in the longitudinal
direction are derived from the differential equations governing the problem which in turn
can be obtained as Euler equations associated with the potential energy functional. For
the case of prescribed end compression, the total potential energy reduces to the total
internal strain energy. The middle surface strains and displacements are taken in the form:

E=uyt %{(W.x)z + (U,x)2} (153)
€, =0,+3{w,)+ ©,)} (15b)
Vo =U,F 0 +WW, F0,0,. (15¢)

The above relations differ from those employed in classical plate theory by the presence
of the nonlinear term in v, the inplane displacement in the transverse direction. Of the
nonlinear terms in ‘v°, the most significant is the underlined term £(v,)’ in eqn 15(a) which
plays a crucial role in modelling buckling involving significant inplane movements of
constituent plates[20]. The other nonlinear terms involving v, (eqn 15b, c) can be safely
discarded as the inplane bending of the plate elements resembles closely the rigid body
translations of cross section. Thus modified, the strain-displacement relations are used in
expressing the strain energy functional in terms of displacements. The corresponding Euler
equations for a typical plate take the form:

N, .+ N,

yy

0 (16a)

Nyt N, +Nov, +Nv,=0 (16b)

X

DV*w — (Nw, + 2N, w, + N,w,,) =0. (16¢)

Xy Taxy 34

In the foregoing N,, N, and N,, are stress resultants related to the strains as follows:

N, = Cle, + ve,} (17a)

N, = C{e, +ve,} (17b)
1 —

N, = cl . Dy, (17¢)

and C = Et/(1 — v and D = Ef*/12(1 — v?), t being the thickness.

In order to obtain an insight into the nature of solution of these differential equations
we employ a perturbation technique and produce ordered sets of sequentially linear
equations. We consider in particular the case of plate structures which carry prescribed
compression by rigid end plattens so that the axial stress may be taken in the form:

N,= — Etll,+ N, (18)

where N, is the modification of the axial stress in the bifurcated state. Taking the stress
resultants and displacements in the form of eqn (4), the eigen value problem for the critical
stresses and buckling modes yields the following solutions for the displacements{17]:
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U= fy) cos(g) (19a)
0= 5(y) sin('"—‘l"é"-) (19b)
W= W) sin(ﬂ;‘—") (19¢)

where ‘i’ takes the values 1 or 2 and thus identifies a participating buckling mode, m; gives
the number of halfwaves of the buckling mode and @(y), etc. are appropriate functions
of ‘y’, the transverse coordinate of the plate.

The second order displacement field for each mode can be extracted from the governing
equations with the aid of the perturbation technique[20] in the form:

Uy = Gp) sin(z'"l'"x> (20a)
vu=5n,00’)+5a.z(y)cos(2m;nx) (200)
Wi = W;o(¥) + Wiy 2(v) 005(2—'”—1‘2) (20¢)

Finally the mixed second order displacement field can similarly be obtained in the form

s =) sin I | g ) sin T P (21a)
o= 0%1(9) cosT I 5 () cos T H T 21b)
Wiy = wh(y) cos(ﬂ:—lM +9(p) cos(—'ﬂil'l’-’z”—x. Q1)

In‘the foregoing the starred end barred quantities are again, appropriate functions of ‘y’
which are determined using a finite strip analysis.

Loading and end boundary conditions

Figure 3(b) shows the variation of displacements of a typical member undergoing
inplane buckling. The structure may be thought of as being compressed by rigid plattens
at the sections of the plane of symmetry. At these planes the section is free to distort but
no rotations relative to the plattens is allowed to occur; also the shear stresses at these
cross-sections vanish. Thus the analysis treats of a case in which the plattens are completely
frictionless. When one of the participating modes takes the form of a purely local mode
(Mode 1), the corresponding halfwave length is generally so small compared to the length
of the structure that any errors introduced by deviations from the assumed end conditions
would be of little consequence as long as the structure is uniformly compressed. Again
when a participating mode takes the form of Euler buckling, the contribution of the
corresponding second order displacements v, and w, are sufficiently small in order for the
analysis to be applicable to a column clamped at its ends.

Displacement functions in the transverse direction
The eqns (19)(21) give the variation of the displacements in the longitudinal direction.
Each of the functions of ‘y’ appearing in the description of inplane displacements are taken
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to be linear whereas cubic functions associated with four degrees of freedom are employed
in the description of normal displacements across the strips.

Some remarks on the solution procedure

With the aid of displacement functions it is possible to set up the stiffness matrices for
the eigenvalue problems using the potential energy functions given by eqn (10a) and the
well known finite strip technique. The corresponding eigen vectors are normalized with
respect to the maxima of the magnitudes of displacements or the values at key locations.
In the determination of second order displacement fields, it is first observed that the
potential energy functions contain terms which are quadratic or bilinear in the first order
quantities which produce the nonzero right hand side of the equilibrium equations. The
eigen vectors and the associated x-variations are used as inputs in the building up of the
said right hand side term. Note that in each of the second order field problems, the
participating harmonics (0 and 2mi or (m, + m,) and (m, —m,)) are uncoupled in the
solution process thus greatly simplifying the computation.

The secondary local modes

The solution of the second order fields is governed by A, the nondimensional
end-shortening of the column and load parameter, even though it is often sufficient to set
a constant value for it in the calculations. Since our object is the determination of the
maximum load the structure can carry for a given level of imperfections, the chosen value
for 1, must not exceed A, the value at which the maximum load is attained by the
structure. For computations, trial analyses with progressively modified values of 4, are
performed till 4, = 4,,, within an error of 19/. (Such an analysis which takes due account
of geometric stiffness terms will be henceforth referred to as Analysis 1.)

The displacement functions of the mixed second-order field have a harmonic variation
in the x-direction and have the same number of half-waves as the primary local mode but
for a difference of +m,. As a result the field often has singularities at values of 4, close
to A,—these corresponding to the buckling of the structure with the half-wave lengths of
the displacement functions. Thus as A;—4, there would result an exaggeration of the
importance of the mixed second-order field because of the absence of the stabilizing
influence of the still higher order terms neglected here. A high sensitivity to small
imperfections is therefore predicted in such cases. An upperbound to the maximum load
carried for a given level of imperfections is, however, easily obtained by neglecting the
geometric stiffness terms contained in eqn (10c) viz. Ay- Ly(u,) which triggers these
secondary local modes. (Such an analysis which neglects the geometric stiffness effects in
the determination of the second order fields will be henceforth referred to as Analysis I1.)

EXAMPLES

The significance of doubly symmetric interaction in practical plate structures is now
illustrated by the following examples:

(i) The interaction of two modes of buckling in a simply supported rectangular plate
having an aspect ratio of 2. Note this problem has been studied by Supple using an
analytical approach and his results are used to illustrate the convergence and accuracy of
the present solutions.

(ii) The interaction of local and overall buckling in wide eccentrically stiffened
panels—a subject of current interest

and

(itf) The interaction of local and overall (more specifically Mode II type of buckling)
in a narrow plate simply supported along its longitudinal edges and carrying a single
eccentric stiffener. No theoretical study of such a problem appears to have been made so
far.
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(i) Mode interaction in a rectangular plate

Figure 5 shows a plate having an aspect ratio of 2. The plate is assumed to be simply
supported with the longitudinal edges allowed to move but held straight. Interaction
between two modes, one having two halfwaves and the other with three halfwaves in the
longitudinal direction (i.e. m; = 2, m, = 3) is studied. As mentioned already, this problem
has been studied by Supple who showed that apart from the two uncoupled equilibrium
paths emanating from the respective critical stresses, there exists a coupled equilibrium
path which takes the form a rising curve (whose projection is a hyperbola in the {,-£, plane)
branching from the secondary buckling path, i.e. the equilibrium path corresponding to
the higher critical stress (Fig. 6). When the initial imperfections in the form of either mode
are present, the buckling mode is a coupled one from the start of the loading, but the
influence of one of the modes tends to predominate as loading progresses.

These conclusions are confirmed by the present study which apparently has taken a
different route. Figure 7(a—c) shows a comparison of our results obtained with 8 elements
and 24 elements in half the plate for four sets of initial imperfection in the two modes.
Attention has been restricted to natural loading paths and complementary equilibrium
paths are not indicated. The convergence of the results are seen to be remarkably good
with the coarser discretization yielding results of sufficient accuracy.

]
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Fig. 5. The details of the plate investigated. {(a) Plate under study. (b) Participating modes.
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Fig. 6. Equilibrium paths of the perfect plate under interaction of two local modes.
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Fig. 7.(a) Relationship between the deflection amplitudes (divided by 1) and the average stress
carried by the plate for imperfections in the second buckling mode (i) £ =0.02, £ = 0.0; (ii)
P = 1.0, P = 0.0. (b, ¢) Relationship between the deflection amplitudes (divided by ¢) and the

average stress carried by the plate for case (i) £{®=0.25, £ =0.20 and case (i) ¢® =0.25,
&P =0.125.

Interaction of local and overall buckling in wide stiffened panels

Figure 8 shows a wide integrally stiffened plate. Because of symmetry with respect to
longitudinal centre lines of each panel, only the action of a typical panel included between
two successive centre lines is considered. As discussed earlier, the present analysis closely

models the clamped end conditions.
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Three types of panels are considered in the present study. Table 1 summarizes the
details of the same. Of these Panel A has a comparatively slender stiffener (d,/r = 25) and
thus initiates the buckling process; Panel A’ has the same cross-section as Panel A but has
a reduced length so that 4,/4, ~ 1.5. Panel B has a stiffer web (d,/r = 15) typically used in
offshore construction. Panel C has a stocky stiffener of the type preferred in aerospace
industry, previously investigated by Tvergaard. In all the cases the overall mode is assumed
to consist of two half-waves to correspond with the boundary conditions indicated in Fig.
3 while the local mode consists of an even number of half-waves.

A common feature of the behavior of Panels A, B and C is the existence of a limit on
the end-shortening on the natural loading path in presence of imperfections. For the
perfect structure the coupled equilibrium path takes the form of a descending hyperbola
branching off the primary buckling path (that corresponding to the lower critical load)
rendering it unstable. Thus in general a catastrophic failure occurs by snap through to
remote equilibrium path. Exceptions to this trend are found in the response predicted for
higher levels of imperfections (and in particular by the upper bound solution) where failure
occurs by the attainment of the maximum load, but not of end-shortening. Thus in these
cases, no loss of stability occurs as the structure begins to shed the load—a gradual process
of failure indeed.

Figure 9(a—c) shows the imperfection-sensitivity surfaces of panels A, A’ and B as given
by the Analysis I. The cases of A and B are those of near-coincident buckling. The surfaces
give the maximum load carried by the structure as a fraction of the lower of the critical
loads of the participating modes. The figures in addition show outlines of the imperfection-
sensitivity surfaces as given by Analysis II. Panel A is seen to be considerably more
imperfection-sensitive than Panel B, the reduction of the load carrying capacity for a local
imperfection of 0.25t (z being the thickness of the plate) in the case of Panel A being more

Table 1*.

Identification Geometry Buckling modes**and critical stresses
of Panel

b t dS t £ n, m, Ocl/E ac2/E

(local) |(overall) x 103 x 103

A 50 1 25 1 1320 22 2 1.157 1.190

B 50 1 15 1 600 12 2 1.526 1.513

c 113.6 1 11.36 | 4.544 | 908.8 12 2 0.475 0.473

A' 50 1 25 1 1080 18 2 1.157 1.762

c' 113.6 1 11.36 | 4.544 | 757.3 10 2 0.475 0.645

*
The notation is explained in Fig. 8

*k
Subscripts 1 and 2 refer to local and overall modes.
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Fig. 9.(a) Imperfection-sensitivity surface of panels A (vide Table 1) (imperfection-amplitudes are
rendered dimensionless by division by plate thickness). (b) Imperfection-sensitivity surface of panel
B (vide Table 1). (c) Imperfection-sensitivity surface of panel A’ (vide Table 1).

than twice that for Panel B. Again the sensitivity to overall imperfections (measured in
terms of the ratio of the corresponding imperfection amplitude to the length of the
structure) is much less severe in the case of Panel B.

The explanation of the severe imperfection-sensitivity of Panel A lies in the significant
modification in the initial buckling suffered by the cross-section and in particular by the
stiffener signified by the displacement w,;, which arises as a result of overall compression
working over the local deformation. This effect is contained in the term
Ou,[0x - Ow,/0, - Ow,,/0x (corresponding to L,(1,) - L, {u, 4,5} of eqn. 10c) of the energy
function—a term ignored in the previous investigations. The same reasoning applies for
Panel A’ (Fig. 9b)—a case of well-separated critical loads—for which imperfection-
sensitivity is still severe.

The presence of local imperfections on the whole, accentuates the difference between
the two solutions based on Analysis I and II respectively. This is due to the triggering of
the secondary local modes at an early stage in the loading process. Again Analysis |
predicts a high degree of sensitivity to minute imperfections. As imperfections become
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smaller and smaller, 4,,, approaches A, and the secondary local modes contained in the
mixed second order field become highly activated. Especially so in this case, as it is seen
that the mixed second order field is, in the transverse direction, antisymmetric with
reference to the stiffeners—a form which closely resembles the eigen modes of the
singularities of the field itself. This feature of the stiffened panel problem has the greatest
significance in the prediction of the behavior of Panel A’. Even though the critical loads
are well separated in this case (R ~1.5) the maximum load predicted for the perfect
structure by Analysis I is no higher than the local critical load itself. This is in contrast
to an increase of about 109 over the local critical load predicted by Analysis II.

The Tvergaard panel (ref. Fig. 10) illustrates how much the two solutions can differ
in their assessment of sensitivity to local imperfections. Significantly the results of Analysis
II (the upper bound analysis) are in closer agreement with Koiter’s solution for the
multibay panel{12]. Again Analysis II indicates that an increase of A,/4, to 1.33 by a
suitable reduction in length (vide Panel C’, Table 1) almost wipes out the sensitivity to local
imperfections and the maximum average stress remains unaltered (at 1.26 1,E) whatever
the magnitude of local imperfections (not illustrated). This trend is in qualitative agreement
with Koiter’s prediction for the multi-bay column. The overall imperfections, however,
continue to have a dominating influence on the behavior of the column.

Example of a narrow plate with an intermediate stiffener

A stiffened plate carrying a single central stiffener is indicated in Fig. 11. The plate is
simply supported all along its edges but the longitudinal edges are free to wave in the plane
of the plate. These boundary conditions closely model the top flange of a box beam. The
interaction of the purely local mode (Mode I) and the overall mode which involves inplane
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Fig. 10. Imperfection-sensitivity of Tvergaard panel (Panel C).

5Loca| mode {8 half waves along the length)

t=1

Ovarall mode (2 half woves along the length)
(L=480, m =8, m,=2, A=104x167 ) = 105167 )

Fig. 11. Details of the narrow stiffened plate studied.
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movement of the stiffener (Mode II) is investigated for certain combinations of initial
imperfections. The case considered is one of near coincident buckling with the critical stress
of Mode II exceeding that of Mode I by 1%, (R ~ 1.01).

The interaction of the two modes of buckling considered does not produce any
catastrophic effects unlike the local-Euler buckling interaction. Analysis I (based on setting
Ay = 4,) indicates that the coupled mode for the perfect structure takes the form of an
ascending hyperbola branching from the equilibrium path associated with the lower critical
load. Thus in this case, the local buckling which occurs first, is soon followed by
bifurcation into the coupled mode. Figure 12(a, b) shows the plots of amplitudes of the
two modes against the average stress carried by the structure for different combinations
of imperfections. It is seen that when imperfection in only one mode is present, there occurs
always a bifurcation to the coupled mode. With combined imperfections, there is no
instability at all. Both the analyses give the same result when imperfections in only one
of the modes is present, though they differ slightly in the prediction of stability of
equilibrium. Some differences, however, are noticed in the responses predicted by the two
analyses for combined imperfections (Fig. 12a, b). The final picture is the same whatever
the type of analysis or the nature of imperfections: there exists a stable rising equilibrium
path and this does involve the overall buckling (Mode II) displacements.

The appearance of overall buckling displacements does not exhaust the stiffness or lead
to a levelling off of the load carried by the structure as long as the structure remains elastic.
In a practical metal structure, there would occur plastic yielding at the stiffener tip because
of the rapid build up of compressive stresses which follows the inplane movement of the
stiffener. The presence of local imperfections tends to reduce the overall
deflections—unlike the case of local-Euler buckling interaction—thus leading to a higher
first yield load for a given level of imperfection in Mode 1I. With the onset of plasticity
a rapid deterioration of the stiffness of the structure can be expected. Thus there still
appears to be an advantage in designing for a higher value of R.

CONCLUSIONS
A doubly symmetric model is proposed for the interactive buckling of prismatic plate
structures subjected to uniform end compression. Typical cases of interaction that can arise

a - Bifurcation to coupled mode
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Fig. 12.(a) Load vs Local buckling amplitude (¢, + ¢{”) for the plate in Fig. 11. (b) Load vs Mode
I1 buckling amplitude (&, + £§) for the plate in Fig. 11
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in prismatic plate structures are considered. The use of a semianalytical technique makes
it possible to consider a variety of cross-sectional geometries with considerable ease.

Under coincident buckling the wide stiffened plates studied here exhibit imperfection-
sensitivity in proportion to the slenderness of the stiffeners. The imperfection-sensitivity
is significantly influenced by a key term in the energy function not considered in the
previous investigations. The paper draws attention to the analytical difficulties associated
with the presence of singularities of the mixed second order field close to the primary
critical local end compression. An upperbound estimate of the stiffness of the structure is
therefore obtained by the neglect of the geometric stiffness terms of the second order fields.
The results of such an analysis for the Tvergaard panel are in closer agreement with those
of Koiter[12].

In the case of narrow stiffened plates supported along the longitudinal edges, no
catastrophic failure is seen to occur in presence of initial imperfections, provided elastic
behavior is assured. In practical cases, the presence of overall imperfections would lead
to early onset of plasticity leading to serious loss of stiffness. Interestingly the presence of
local imperfections can be of beneficial influence here in that they tend to reduce the overall
deflections, thus delaying the onset of plasticity.
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